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LETTER TO THE EDITOR 

On the spreading of two-dimensional percolation 

P Grassberger 
Physics Department, University of V'uppertal, Gauss-Strasse 20, D-5600 Wuppertal 1 ,  West 
Germany 

Received 5 November 1984 

Abstract. New high statistics measurements of :he spreading dimension d for two- 
dimensional percolation are presented. The value d = 1.675 * 0.005 excludes, in particular, 
a recent conjecture of Havlin and Nossal. 

Some time ago, Middlemiss et a1 (1980, see also Alexandrowicz 1980, Pike and Stanley 
198 1)  introduced several new critical exponents for percolation. They measure essen- 
tially how the infinite cluster is unveiled if one starts at an arbitrary initial point on 
it, and constructs the cluster by adding layer by layer in discrete time steps. In each 
step, all sites are added which are on the boundary of the part already constructed, 
and which are occupied (resp., in bond percolation, which are connected to the already 
constructed part by unbroken bonds). These latter sites are called 'growth sites'. 

Interesting aspects are e.g. the increase of the cluster mass M ,  unveiled at time t, 

given at p = pCr by a scaling law 

(1 )  2 M , - t  9 

and the growth of its average radius R,, given by 

R, - t ",I. (2) 

The same exponents were later studied independently by Grassberger (1983) (called 
I in the following), and were computed for d = 2  by Monte Carlo simulations. The 
accuracy was comparable to that of Pike and Stanley (which was much higher than 
that of Alexandrowicz and of Middlemiss et al) but the results were not in agreement. 

In I, this kind of cluster growth was interpreted as the spreading of an epidemic 
with short infectious period (one time step) and with permanent immunisation. The 
exponent v/ vll measures then the increase of acected area ( vII was called T in Alexan- 
drowicz (1980) and in I), while the exponent d measures the increase of the number 
of affected individuals (the 'size' of the epidemic (Bailey 1975)). We shall follow 
Vannimenus et al (1984) and call 2 the spreading dimension. 

Paper I contained also a detailed formulation of hyperscaling relations (see also 
Havlin and Nossal 1984), showing that there is indeed only one exponent in addition 
to the exponents known previously. The spreading dimension, although not considered 
explicitly there, is found from these scaling relations to be 

2 = ( 2 v - p ) / v i , .  (3) 
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More recently, several authors (Hong and Stanley 1983a, b, Havlin and Nossal 
1984, Herrmann et a1 1984, Vannimenus et a1 1984, Angles d’Auriac et a1 1984, Rammal 
et a1 1984, Stanley 1984) have again taken up this problem. Monte Carlo calculation 
of supposedly comparable statistics to that of I and of Pike and Stanley (1981) have 
been presented, again with mutually exclusive results. In addition, Havlin and Nossal 
conjectured an exact relation which can be written as 

u,, = 2u- 1 - p  ( Havlin-Nossal conjecture). (4) 

Inserting here the values (Nienhuis 1984) u = $ and p = for d = 2, we would obtain 

Although the above conjecture can be shown to be wrong in the ~ = ( 6 - d )  
expansion (Cardy and Grassberger 1985), we found the situation sufficiently confused 
to justify a new precise Monte Carlo measurement in two dimensions, the details of 
which will be described below. 

The results for d  ̂ and vll are shown in table 1, together with previous estimates. 
We see that the Havlin-Nossal conjecture is violated by 3 standard deviations. Also, 
several of the Monte Carlo estimates mentioned above are incompatible with our values. 

V I ]  = 1.5278. 

Table 1. Spreading dimension and exponent U,, for two-dimensional percolation. Values 
obtained by using as constraints the scaling relations of I are marked by an asterisk. 

Reference 2 YII 

Alexandrowicz (1980) 
Pike and Stanley (1981) 
Grassberger (1983) 
Hong and Stanley (1983a) 
Hong and Stanley (1983b) 
Havlin and Nossal (1984) 
Rammal er a/ (1984) 
Herrmann el al (1984) 
This work 

1.69 i 0.05 
1.64 f 0.02 
1.69 f 0.02* 
- 
- 
1.64i  0.02 
1.72 * 0.02 

I .675 i 0.005* 
- 

1.57 f 0.10 
1.49 f 0.02 
1.494*0.015* 
1.38f0.1 
-1.55 
1 S 4 i  0.05 

1.46 * 0.07 
1.509 f O.O04* 

- 

The method employed in the present paper is essentially the same as in I. In 
particular, we study bond percolation on a square lattice, in order to use the fact that 
the percolation probability is known rigorously (Kesten 1980) as p , , = i .  Also, we do 
not build the infinite cluster by starting from a single centre point. Instead, we start 
from a whole line of wetted sites, and unveil layer by layer the points connected to 
that line. Boundary conditions are chosen periodic, i.e. we actually consider a cylinder, 
starting with a wetted circumference and watching the spread parallel to the axis. A 
typical pattern formed in this way is shown in figure 1. The growth sites are indicated 
by heavy dots; the sites whose connection to the line x = 0 is already established are 
shown as light dots. 

We should point out that in this way we do not obtain the infinite cluster only. 
Instead, we obtain all sites connected to the original line, even if they belong to finite 
clusters. This is however no problem,. since the relevant scaling laws were already 
formulated in I. In particular, the number of wetted sites in the tth layer (i.e., the 
number of growth sites at time t )  decreases like 
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Figure 1. Sites connected to the line x = 0 by <300 links in a typical run at p =per. The 
cluster spreads in each time step r + t +  1 by adding the next layer, consisting of sites 
connected by exactly r links. These latter sites, called ‘growth sites’, are denoted by heavy 
dots. For technical reasons, a triangular lattice is shown (all numerical results quoted are 
for square lattices). 

and the mean distance of these growth sites from the starting line x = 0 increases like 

(x,)- t”’”II. (6) 

The main differences to I concern the algorithm used to find the wetted sites, and 
the method used to extract critical exponents from the data. 

In contrast to I, we now stored, in one big matrix of bit maps, whether each lattice 
site is already wetted or not. This requires only one bit per site, thus allowing lattices 
of 3840 x 600 sites to be used on a rather small computer. In another array were stored 
the coordinates of all growth sites. For each time step, the new growth sites (i.e. sites 
not yet wetted and adjacent to old growth sites, connected to them by unbroken bonds) 
were written on a new array, and the bit maps were continuously updated to include 
all new growth sites as wetted sites. At the end, the old array of growth sites was 
replaced by the new one, and the next time step started. This method, in addition to 
needing modest storage, is rather fast. This is essentially due to the fact that the infinite 
cluster need not be known before it is uncovered layer by layer. Thus, each wetted 
site is tested only about two times during the whole process, while non-wetted regions 
are never tested at all. 

Due to the efficiency of the algorithm, we could make 1600 runs of 1035 time steps 
(=layers), with all sites on a line of 3840 sites originally wetted in each run. This took 
about 35 hours of CPU time on a CYBER 170/720, corresponding to -4 hours on a 
CYBER 76. The total number of wetted sites was - 1.1 x lo9, to be compared e.g. with 
a total of -5 x lo7 in Havlin and Nossal (1984), and with -2 x IO’ in Rammal et a1 
(1984). 

The main advantage of growing from a whole line instead of a single site is that 
one avoids the large fluctuations during the first time steps when the number of growth 
sites is very small. These fluctuations of course affect all observables at all later times. 
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The other improvement over 1 concerns the estimation of critical exponents. In I, 
straight lines were simply fitted to plots of log N, resp. log(x,) against t. In view of 
the danger of overlooking corrections to scaling in this way (Lyklema and Kremer 
1984), we used a different method in the present paper. In figures 2 and 3 we show 
the quantities 

tNt 
2Nt+ZiT:, N,,' B, = I 

plotted against l / t .  It is easily seen that 

0.89 - 
20 percolation, v / v l l  
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Figure 2. Quantity A, against 1/r .  The limit of A, for t + w ,  indicated by the bold dot, is 
equal to w / w , , .  

_ . , .  , . , 
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Figure 3. Quantity B, against l / r  
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with corrections proportional to l / t  if all corrections to scaling have exponents > 1, 
and with corrections - lA, 0 < A < 1, otherwise. From figures 2 and 3 one sees that the 
latter corrections are not needed. One also sees that straight lines in log-log plots, 
corresponding to fitting horizontal lines in figures 2 and 3, would produce spuriously 
small errors. 

From figures 2 and 3 we can read the estimates 

-- U - 
- = 0.883 * 0.003, 
VI1 VI1 

- 0.793 * 0.004. 
V 

This leads first to p /  v = 0.102 *0.007, in perfect agreement with the exact value 
p /  v = 5/48 = 0.1042. Using this latter value, we finally obtain the results quoted in 
table 1 .  

Other exponents derived from these are the ‘minimal path exponent’ (Stanley 1984) 
vI l /  v = 1.132 f 0.003 and the exponent vIl - v = 0.176 f 0.006 governing the velocity of 
the spread in the supercritical case: for p > pcr, one has (x!) - / p  -pCrl” -”t .  

Finally, we want to use the opportunity to clarify a confusing statement made in 
I. There, it was said that the solitary wave of growth sites has a time-independent 
finite width and a shape as shown in figure 3 of that paper. In this form, this might 
not be true since the wave was defined there as an ensemble average, and the position 
of the wave might fluctuate from realisation to realisation, with a vgriance at. This 
would then lead to a symmetric shape of the wave with a width aJt. The results of 
that paper should however describe the average shape of the wave after shifting the 
centre of each section of length L >> Ip -pcrlY-Vl~-P to the origin (such sections contain 
>>1 growth sites, allowing a shape and width to be defined). 

I am indebted to Remy Jullien for inviting me to the CECAM workshop on cluster 
growth, Orsay 1984, whose stimulating atmosphere triggered the present investigation, 
and to J Vannimenus for discussions. 
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